From Idea to Product – Casting Technology and Component Development at the Fraunhofer IFAM

ROADSHOW 2012 – LIGHTWEIGHT TECHNOLOGY

Christoph Pille, Felix Horch

Agenda

- Fraunhofer-Gesellschaft & Fraunhofer IFAM at a glance
- Casting Technology
- Component Development
- Our Offer

The Fraunhofer-Gesellschaft at a glance

Fraunhofer-Gesellschaft

- founded in 1949
- 60 Fraunhofer-Institutes
- 40 locations in Germany
- 20.000 employees
- 1.8 bn. € total research budget
 - more than 1.5 bn. € contract research
 - 2/3 research for industrial partners
 - 1/3 government funding

Fraunhofer IFAM

- founded in 1969
- two locations
 - Bremen
 - Dresden
- Research groups in Stade and Oldenburg
- 535 employees (2012)
 - 40.4 m. € total budget (2011)
- departments
 - Shaping and functional materials
 - Adhesive bonding and surfaces

The department of Casting Technology and Component Development

casting technology

- castings with complex geometries
- function integrated castings (Embedded sensors / RFID transponder)
- material and process development (especially for die casting, lost foam-technology, investment casting)
- numerical simulation, component analytics

component development

- full electric drive train / wheel hub motors
- development of ECUs / power electronics
- functional safety
- productions technologies for electrical machines, casting production of coils and housings using
- vehicle concepts, especially for electric mobility

Agenda

- Fraunhofer-Gesellschaft & Fraunhofer IFAM at a glance
- Casting Technology
- Component Development
- Our Offer

Current research subjects in casting technologies

CFRP-aluminium hybrid casting

embedding of RFID transponder for part identification

embedding of sensors for condition monitoring

new cast parts for electric mobility applications

CFRP-aluminium hybrid casting

- motivation and objectives
 - trend in modern lightweight materials is increasingly towards multi-material design
 - realization of lean, heavy duty and reliable transition structures for CFRP-Al-mixed connections in integral design (e.g. cast nodes)

CFRP-aluminium hybrid casting

- advantages
 - lightweight construction / small space design
 - corrosion-resistant join patch
 - fibre adjusted design

Embedding of RFID transponder for part identification

- advantages of RFID transponder compared to alternative ident-technologies
 - part identification via radio transmission
 - no intervisibility required
 - penetration of non-metallic materials
 - complete automation of data acquisition
- addtional advantage
 - tamper-proof, electronic "genuineness certificate"
 → protection against product piracy

Embedding of RFID transponder for part identification

- advantages of cast embedded RFID
 - resistant to dirt, industrial terms and environmental conditions
 - no loss of information due to mechanical damage
 - surface treatment feasible (e.g. varnishing, blasting)
 - full traceability of cast parts

Embedding of RFID transponder for part identification

Embedding of sensors for condition monitoring

- widespread implementation of embedding in castings failed so far
 - appropriate sensor systems
 - joining techniques

strain gauges

- well established and cost effective
- but only applicable on the surface
- protection layer required against damage
- no condition monitoring in the component

Strain gauge Image: HBM

piezo-electric sensors

- feasibility of embedding in casting was demonstrated
- piezo-ceramic material is restricted to 200 300 °C
- only dynamic loads measureable, not static loads

Casted pedal crank with embedded piezo sensors Image: Fraunhofer IFAM

Embedding of sensors for condition monitoring

- characterization of the DiaForce® sensor
 - thin film sensor based on piezoresistive hydrocarbon layers
 - developed and manufactured at Fraunhofer IST
 - changes electrical resistance under mechanical load
 - high tribological resistance (hardness ~ 24 Gpa)
 - extremely thin film sensory coating (9-10 μm)

Embedding of sensors for condition monitoring

advantages

- measuring of dynamic loads
- measuring of static loads / deformation
- no thermal insulation needed

Agenda

- Fraunhofer-Gesellschaft & Fraunhofer IFAM at a glance
- Casting Technology
- Component Development
- Our Offer

Department Component Development

FROM THE DEVELOPMENT TO THE SAVE APPLICATION IN VEHICLE

DEVELOPMENT

PRODUCTION

TESTING

APPLICATION

- electromagnetic design / simulation of electric machines
- vehicle control, inverter, software development, controller
- construction of electric drive
- recent vehicle concepts of electro mobility

- casting production of coils
- manufacturing of complex components for electric machines using casting technology
- assembly of prototypical electric drive
- component manufacturing drive chain / chassis

- functional safety of control units
- performance test of electric machines
- fault tolerance of electric drive
- testing of complete vehicle

- vehicle integration of components
- configuration of test bench and demonstrator vehicle
- Major structuring of further education electro mobility

DEVELOPMENT Fraunhofer Wheel Hub Drive - Drive Concept

- permanent magnet synchronous machine with outer rotor
- power electronics (IGBTs) with dc-link capacitor and control unit placed inside the stator case
- case integrated fluid cooling for stator windings and power electronics
- increased fault tolerance by changes in the converter-drive topology
- CAN-Bus connection to vehicle control unit

Fig.: sectional view of the wheel hub motor

PRODUCTION Design and construction of complex casting parts

- Production of complex casting parts for electrical machines using Lost Foam casting (e.g. integrated fluid cooling system)
- Great freedom of design (e.g. undercuts, wide range of variants)
- Cost-efficient production of models due to low tool wear
- Milling of EPS-models for rapid production of functioning prototypes
- Inherent flexibility due to segmentation of the model

PRODUCTION Casting of coils for electric machines

- Idea: Coils are produced using a casting process
 - Exact reproduction of design geometry
 - Possibility to vary the cross-sectional geometry along the entire length of the conductor
- Flat conductor alignment with variable width and height
- Slot filling factor up to 90%
- Minimised skin effect.
- Positive model of the coil is stretched to allow the casting process and insulation
- Compression of the coil after the casting process

Casted coils (copper / aluminium)

Sectional view of different conductor types: circular (left), rectangular (right) and casted (middle)

PRODUCTION Advantages of casted coils

- Considerable increase in slot filling factor allows for significant increase in torque density and efficiency
- Production process of coils offers great potential for cost reduction through automation
- Weight reduction of electrical machines by reducing the height of slots and teeth
- Improved thermal properties through reduced air entrapment, reduced insulation layers and improved thermal conduction between coil and tooth
- Coils become a design element in the motor development process
- Minimised skin effect through flat conductor arrangement
- Exchanging copper for aluminium as coil material while maintaining the existing motor geometry leads to significant weight and cost reduction

TESTING

Safety Issues

- asymmetrical torque at the wheels leads to yawing moment
- reliable safety concept to assure safe vehicle state:
 - reduction of braking torque in case of electrical failures
 - current control with high torque accuracy
 - control unit has to meet requirements of standards like ISO26262
 - with PMSM, active short circuit to avoid high voltage in the dc link in case of failure

Abb.: yawing moment in all wheel driven electric vehicles

TESTING Fraunhofer Wheel Hub Drive – Specifications and Efficiency Map

Description	Value
Rated Power	50 kW
Peak Power	72 kW
Rated Torque	700 Nm
Peak Torque	900 Nm
Max. Speed	1500 rpm
Rated DC-Voltage	400 V
Max. Efficiency	93.4 %
Mass (incl. Bearings)	42 kg
Outer diameter	364 mm
Length	105 mm

Measured efficiency map

APPLICATION Vehicle integration and testing - Demonstrator vehicle

- Integration of two wheel hub drives at the rear axle of an electric concept car
- 400 V Lithium-ion battery system with 37.6 kWh
- Complete control over vehicle control unit, independent adjustment of torque distribution possible
- Retention of the original disc brake system at the inner side of wheel carrier
- Reconstructed suspension system

Top: Concept car »Frecc0 2.0« with wheel hub drives

Bot.: Wheel carrier with inner-side disc brake and mounted wheel hub drive

Agenda

- Fraunhofer-Gesellschaft & Fraunhofer IFAM at a glance
- Casting Technology
- Component Development
- Our Offer

Our Offer

Casting Technology

- combination and adaption of technology advantages for casting applications
- feasibility studies for casting processes
- prototyping of castings (lost foam or investement casting)
- fault and process analysis for casting processes
- market analysis
- test series up to pre-series engineering
- numerical simulation
- x-ray inspection | computer tomography

Component Development

- development of manufacturing methods for electric drives, especially the production of coils and housings using investment casting, lost foam casting or die casting
- electromagnetic design of electric machines, e.g. numeric field calculation and improvement of torque, efficiency and package
- simulation of system performance of the electric drive and the control concept
- development of electrical drive control units and implementation of safe control algorithms
- testing of electrical drives and assessment of generator and motor operating behavior
- integration and testing of the drive train in the complete vehicle
- technical and strategical consulting

Contact

Christoph Pille, Dipl.-Wi.-Ing.

Group Leader Casting Technology
Casting Technology | Component Development

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM

Wiener Straße 12 | 28359 Bremen | Germany Telefon + 49 421 2246-227 | Fax -300 christoph.pille@ifam.fraunhofer.de

www.ifam.fraunhofer.de

Felix Horch, Dipl.-Ing.

Group Leader Component Development Casting Technology | Component Development

Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM

Wiener Straße 12 | 28359 Bremen | Germany Telefon + 49 421 2246-171 | Fax -300 felix.horch@ifam.fraunhofer.de

www.ifam.fraunhofer.de

