

Roadshow 2012

Complete process chain after casting for Aluminium lightweight design

Dr. Lars Martin, Dipl.-Ing. Gerhard Niebuhr, Dipl.-Ing. Christian Wex

Locations

Locations of Finoba Automotive GmbH

Location Hertingshausen plant I 6.500 m² shopfloor Area

Location Kassel plant II 5.000 m² shopfloor Area

Location Kassel plant III 2.000 m² shopfloor Area

Private owned company with 360 Employees and 22 Mio. € sales volume

complete process-chain for lightweight design

Development of heat treatment racks (fixtures)

Examples: shape deviation by optically visualisation

Heat treatment

Process of Heat treatment

Heat treatment

Solution annealing (heat treatment)

- the best practice position in the heat treatment frame will impact all successor processes of semi finished parts.
- Positioning evaluation needs to be done correctly. This will essentially influence post processing and costs of straightening.
- ➔ The evaluation of the test is realized with e.g. GOM-measuring

We treat parts

MC REAR hours

Heat treatment

Air quenching

- → Incoming air flow above the parts
- → Oszillation of base frame under the airquench
- ➔ Cooling rate and incoming air flow must be aligned with the temperature of less than 200° C, duration within 15 sec

strength – mechanical properties

Mechanical properties of die cast parts

- Consideration of peak results while tensile strength evaluation
- → Influence of microporisity

We treat parts

- Best practise is to generate test samples direct out of the construction part
- Test samples out of the initial filling piece may lead into wrong results
- Test procedures need to be confirmed between customer and supplier

Range of mechanical properties (e.g. AISi10Mg Mn)

FINOBA AUTOMOTIVE GMBH

straightening of structural parts

Straightening of structural parts

- ➔ The calibration of the construction parts will be habitually done by manually operations. Workflow will following blister removal and checking the shape in gauges with interferences.
- → the efforts / costs for the project starts are even higher due to small batch sizes and missing experience of straightening
- → within serial production the straightening is more experienced and could potentially decrease costs
- within integrated or automatically supply chain, automatically straightening is possible (depending on volume, amounts of car sets)

Processing by hand for lightweight design

FINOBA AUTOMOTIVE

Processing by hand for lightweight design

- functional and contact surfaces have to be assessed in detail at the preparatory stage in collaboration with the foundry as well as with the vehicle assembly
- heat checking with increasing service life is costly because the surface deteriorates
- grinding costs increase with increasing service life of the die
- → with manual grinding, the effort involved can be up to about 8 minutes per part
- ➔ this time can be reduced by using robot cells but even so grinding costs can still account for about 20% of the added value after casting

Manual cleaning of structural parts:

Automatic cleaning of structural parts:

Machining

Locating points for next die:

- coordination is needed between die-making and machining
- ➔ follow-on dies always have to be designed to be dimensionally identical otherwise there will be a cost driver in the form of unnecessary setting-up times between dies
- ➔ the interface (locating points) between the raw parts and the parts to be machined has to be determined and designed in advance
- these locating points have to be consistent for all processing steps: straightening after heat treatment / machining / final gauging.
- → the locating points have to be included in the drawing – ideally at the development stage.

Insertion of Helicoil threaded inserts

Application of Helicoil threaded inserts

- → Helicoils can be inserted manually or automatically
- processing using robots is difficult (FINOBA has automated this process and optimized it for serial production)
- ➔ with coated Helicoils, the surface coating can result in assembly problems because the coating thickness is not always uniform
- ➔ if possible, alternatives should be considered at the design stage e.g. rivet nuts or self-clinching nuts that are easier to automate (see alternatives below)

Assembling of Helicoil threaded inserts

Alternatives to Helicoil threaded inserts:

→ Clinch-nuts

➔ Rivet Nut

Ensat®

→ Ensat[®]-inserts

Assembling of Helicoil threaded inserts

Assembling of Helicoil and potential failures:

- → Threat is not fully apperend at first gang
 - → sufficient material necessary

→Bolt is not capable removeable.

→ sufficient material necessary

Surface protection by washing / pickling / preservation

FINOBA has installed several bath of 10m³

- → flexibility for small and bigger construction parts is given
- → bath fluid can be used several times (less worn out)
- → best fluid stream around the parts

We treat parts

→ trademark fluid Alodine 2040 / Henkel in usage

Entfetten • Beizpassivieren

Assembling of Helicoil threaded inserts

YOUR advantage:

- ➔ One face to your aims
- → Reducing of ppm-rate through continious control of processes (due to DIN/ISO 16949)

contakt: Dr. Lars Martin research & development / product advisor Email: <u>martin@finoba-gmbh.de</u> Mobil: +49 (0) 173/ 723 7025

> Dipl.-Ing. Gerhard Niebuhr Production manger Email: <u>niebuhr@finoba-gmbh.de</u> Mobil: +49 (0) 171/ 331 8765

Dipl.-Ing. Christian Wex sales manager Email: <u>wex@finoba-gmbh.de</u> Mobil: +49 (0) 172/ 845 6537

> administration: Großenritter Str. 35 D-34225 Baunatal www.finoba-gmbh.de

Thanks for your attention!